Abstract

AbstractThe N-Queens problem is relevant in Artificial Intelligence (AI); the solution methodology has been used in different computational intelligent approaches. Max Bezzel proposed the problem in 1848 for eight queens in 8 \(\times\) 8 chessboard. After that, the formulation was modified to an N-Queens problem in a chessboard. There are several ways of posing the problem and algorithms to solve it. We describe two commonly used mathematical models that handle the position of queens and restrictions. The first and easiest way is to find one combination that satisfies the solution. The second model uses a more compact notation to represent the queen’s potions. This generic problem has been solved with many different algorithms. However, there is no comparison of the performance among the methods. In this work, a comparison of performance for different problem sizes is presented. We tested the Backtracking, Branch and Bound, and Linear Programming algorithms for a different number of queens, reaching 17. In addition, we present statistical comparative experimental results of the different methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.