Abstract

Extracellular microvesicles are membranous nano-sized cellular organelles secreted by a variety of cells under normal and pathological conditions and heterogeneous in size ranging from 30 nm to 1 μm. They carry functional microRNAs that can influence immunity and development. For a particular application of microvesicles, choice of isolation method is particularly important; however, their isolation methods from colostrum in particular have not been described clearly. In this work, differential ultracentrifugation as a conventional method, ultracentrifugation with some modification such as additional precipitations, ultrafiltration, sucrose gradient separation and ExoQuick™ as a commercial reagent were compared. The goal was to compare mainly microvesicular total microRNA yield, distribution and purity among the methods then select the best isolation method for bovine colostrum microvesicles based largely on microRNA yield with the view of applying the vesicles in work where vesicular micro-RNA cargo is the target bioactive component. Highest yields for vesicular microRNA were obtained using conventional methods and among them, subsequent ultracentrifugation with 100,000 g and 135,000 g conventional method 2 was selected as it had the highest RNA to protein ratio indicating that it pelleted the least protein in relation to RNA an important factor for in vivo applications to assess microvesicle functionalities without risk of contaminating non-vesicular biomaterial. Microvesicles isolated using conventional method 2 were successfully internalized by cells in vitro showing their potential to deliver their cargo into cells in vitro and in vivo in case of functional studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.