Abstract

Our objectives were to evaluate the performance of an ear-attached automated estrus detection (AED) system (Smartbow; Zoetis) that monitored physical activity and rumination time, and to characterize AED system estrus alert features (i.e., timing and duration). Lactating Holstein cows (n = 216) commenced a protocol for the synchronization of estrus at 50 ± 3 DIM or 18 ± 3 d after artificial insemination. For 7 d after induction of luteolysis with PGF2α (d 0), we used visual observation of estrous behavior (30 min, 2 times per day) and data from an automated mounting behavior monitoring system based on a pressure-activated tail-head sensor (HeatWatch; Cowchips LLC) as a reference test (RTE) to detect behavioral estrus. Concomitantly, estrus alerts and their features were collected from the AED system. Progesterone levels confirmed luteal regression, and transrectal ultrasonography confirmed the occurrence and timing of ovulation. Performance metrics for the AED system were estimated with PROC FREQ in SAS, using the RTE or ovulation only as a reference. Performance was also estimated after the removal of cows with a discrepancy between the RTE and ovulation. Continuous outcomes with or without repeated measurements were evaluated by ANOVA using PROC MIXED in SAS. Based on the RTE, 86.6% (n = 187) of the cows presented estrus and ovulated; 1.4% (n = 3) presented estrus and did not ovulate; 6.4% (n = 14) did not present estrus but ovulated; and 5.6% (n = 12) did not present estrus or ovulation. We found no difference in the proportion of cows detected in estrus and with ovulation for the AED system (83.4%) and the RTE (86.6%). Compared with estrus events as detected by the RTE, sensitivity for the AED was 91.6% (95% CI: 87.6-95.5) and specificity was 69.2% (95% CI: 51.5-87.0). Using ovulation as reference, sensitivity was 89.6% (95% CI: 85.3-93.8) and specificity was 86.7% (95% CI 69.5-100). For all cows with agreement between the RTE and ovulation, sensitivity was 92.5% (95% CI: 88.7-96.3) and specificity was 91.7% (95% CI: 76.0-100). The mean (±SD) interval from induction of luteolysis to estrus alerts, estrus alert duration, and the onset of estrus alerts to ovulation interval were 72.2 ± 18.1, 13.5 ± 3.8, and 23.8 ± 7.1 h, respectively. We concluded that an ear-attached AED system that monitored physical activity and rumination time was effective at detecting cows in estrus and generated few false positive alerts when accounting for ovulation, cow physiological limitations, and the limitations of the RTE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.