Abstract

Abstract Austenitic Stainless-Steel grade 316L is one among the significant ASS grades which is most commonly used in various industry sectors. It has excellent corrosion resistance in ordinary atmospheric and also in more arduous environments such as salt water and environments where resistance to chloride corrosion is required. Whilst performing well when exposed to relatively high temperatures, this grade of Austenitic Stainless steel also maintains its strength and toughness at sub-zero temperatures, making this an excellent choice for various applications in industries sectors such as Marine, general construction, and water treatment. Therefore, present study focused on evaluating the mechanical properties such as ultimate tensile strength (UTS), yield strength (YS) and strain hardening exponent (n) are evaluated based on the experimental data obtained from the uniaxial isothermal tensile tests performed at an interval of −25 °C from 0 °C to −50 °C and at three orientations (0, 45, 90) degrees to the rolling direction and cross head velocity (3, 5, 7) mm/min were chosen. A total of 27 experiments have been planned based on design of experiments to conduct experiments. A mathematical model for the prediction of ultimate tensile strength (UTS), yield strength (YS) and strain hardening exponent (n) was developed using process parameters such as temperature, orientation and cross head velocities. Results have shown that mechanical properties can be predicted with a reasonable accuracy within the range of process parameters considered in this study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.