Abstract

Abstract Subseasonal to seasonal (S2S) weather forecasting has made significant advances and several products have been made available. However, to date few studies utilize these products to extend the hydrological forecast time range. This study evaluates S2S precipitation from eight model ensembles in the hydrological simulation of extreme events at the catchment scale. A superior bias correction method is used to correct the bias of S2S precipitation for hydrological forecasts, and the results are compared with direct bias correction of hydrological forecasts using raw precipitation forecasts as input. The study shows that the S2S models can skillfully forecast daily precipitation within a lead time of 11 days. The S2S precipitation data from the European Centre for Medium-Range Weather Forecasts (ECMWF), Korea Meteorological Administration (KMA), and United Kingdom’s Met Office (UKMO) models present lower mean error than that of other models and have higher correlation coefficients with observations. Precipitation data from the ECMWF, KMA, and UKMO models also perform better than that of other models in simulating multiple-day precipitation processes. The bias correction method effectively reduces the mean error of daily S2S precipitation for all models while also improving the correlation with observations. Moreover, this study found that the bias correction procedure can apply to either precipitation or streamflow simulations for improving the hydrological forecasts, even though the degree of improvement is dependent on the hydrological variables. Overall, S2S precipitation has a potential to be applied for hydrological forecasts, and a superior bias correction method can increase the forecasts’ reliability, although further studies are still needed to confirm its effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.