Abstract
Use of multi-model ensembles from global climate models to simulate the current and future climate change has flourished as a research topic during recent decades. This paper assesses the performance of multi-model ensembles in simulating global land temperature from 1960 to 1999, using Nash-Sutcliffe model efficiency and Taylor diagrams. The future trends of temperature for different scales and emission scenarios are projected based on the posterior model probabilities estimated by Bayesian methods. The results show that ensemble prediction can improve the accuracy of simulations of the spatiotemporal distribution of global temperature. The performance of Bayesian model averaging (BMA) at simulating the annual temperature dynamic is significantly better than single climate models and their simple model averaging (SMA). However, BMA simulation can demonstrate the temperature trend on the decadal scale, but its annual assessment of accuracy is relatively weak. The ensemble prediction presents dissimilarly accurate descriptions in different regions, and the best performance appears in Australia. The results also indicate that future temperatures in northern Asia rise with the greatest speed in some scenarios, and Australia is the most sensitive region for the effects of greenhouse gas emissions. In addition to the uncertainty of ensemble prediction, the impacts of climate change on agriculture production and water resources are discussed as an extension of this research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Progress in Physical Geography: Earth and Environment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.