Abstract

High voltage direct current (HVDC) transmission systems play a critical role to optimize resource allocation and stabilize power grid operation in the current power grid thanks to their asynchronous networking and large transmission capacity. To ensure the operation reliability of the power grid and reduce the outage time, it is imperative to realize fault diagnosis of HVDC transmission systems in a short time. Based on the prior research on fault diagnosis methods of HVDC systems, this work comprehensively summarizes and analyzes the existing fault diagnosis methods from three different angles: fault type, fault influence, and fault diagnosis. Meanwhile, with the construction of the digital power grid system, the type, quantity, and complexity of power equipment have considerably increased, thus, traditional fault diagnosis methods can basically no longer meet the development needs of the new power system. Artificial intelligence (AI) techniques can effectively simplify solutions’ complexity and enhance self-learning ability, which are ideal tools to solve this problem. Therefore, this work develops a knowledge graph technology-based fault diagnosis framework for HVDC transmission systems to remedy the aforementioned drawbacks, in which the detailed principle and mechanism are introduced, as well as its technical framework for intelligent fault diagnosis decision.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.