Abstract

Due to the unobserved nature of the true return variation process, one of the most challenging problems in evaluation of volatility forecasts is to find an accurate benchmark proxy for ex-post volatility. This paper uses the Australian equity market ultra-high-frequency data to construct an unbiased ex-post volatility estimator and then use it as a benchmark to evaluate various practical volatility forecasting strategies (GARCH class model based). These forecasting strategies allow for the skewed distribution of innovations and use various estimation windows in addition to the standard GARCH volatility models. In out-of-sample tests, we find that forecasting errors across all model specifications are systematically reduced if using the unbiased ex-post volatility estimator compared with those using the realized volatility based on sparsely sampled intra-day data. In particular, we show that the three benchmark forecasting models outperform most of the modified strategies with different distribution of returns and estimation windows. Comparing the three standard GARCH class models, we find that the asymmetric power ARCH (APARCH) model exhibits the best forecasting power in both normal and financial turmoil periods, which indicates the ability of APARCH model to capture the leptokurtic returns and stylized features of volatility in the Australian stock market.

Highlights

  • IntroductionImportant financial decisions such as portfolio optimisation, derivative pricing, risk management and financial regulation heavily depend on volatility forecasts

  • Comparing the three standard GARCH class models, we find that the asymmetric power AutoRegressive Conditional Heteroscedastic (ARCH) (APARCH) model exhibits the best forecasting power in both normal and financial turmoil periods, which indicates the ability of APARCH model to capture the leptokurtic returns and stylized features of volatility in the Australian stock market

  • We empirically investigate the predictive ability of various volatility forecasting strategies employing GARCH class models in the Australian equity market that has several distinguishing features

Read more

Summary

Introduction

Important financial decisions such as portfolio optimisation, derivative pricing, risk management and financial regulation heavily depend on volatility forecasts. In derivative pricing, such as in the estimation of the Black-Scholes option pricing model, volatility is the only parameter that needs to be forecasted. The prediction of volatility is crucial in development of Value at Risk (VaR) and a variety of systemic risk models, as well as in banking and finance regulations. According to the Basel Accord II and III, it is compulsory for all financial institutions to predict the volatility of their financial assets to incorporate the risk exposure of their capital requirements

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call