Abstract

Mixed blooms of 4 species of harmful raphidophytes (Chattonella cf. verruculosa, Chat- tonella subsalsa, Heterosigma akashiwo, and Fibrocapsa japonica) occur in the shallow (1 to 2 m) Delaware Inland Bays (DIB), USA. Raphidophytes vertically migrate in other deeper water ecosys- tems to utilize deep nutrient stocks at night, and thus obtain an advantage over non-migrating algae. Anoxic DIB sediments release high levels of bioavailable phosphate, which could potentially be used by vertically migrating flagellates. This study aimed to characterize and understand the migration patterns of DIB raphidophytes, and determine whether benthic phosphate fluxes could provide the cells with P. We demonstrated vertical migration of isolated DIB raphidophyte cultures in the labora- tory, where differences in the response of C. subsalsa and H. akashiwo to light:dark period manipu- lations suggested possible differences in external versus endogenous regulation of migration behav- ior in the 2 species. Natural blooms in the field (enclosed in a mesocosm system) also exhibited patterns of diel vertical migration, as determined by quantitative real-time PCR (QPCR) used to enumerate the diel vertical distributions of each species. Our data suggested that these 2 photoauto- trophic species spend daylight hours near the surface and are found directly on the sediment surface at night. However, diel changes in particulate C:P ratios did not support the hypothesis that there is preferential uptake of sedimentary phosphate at night. Our results also suggested that the migration behavior may have important implications for designing sampling strategies for monitoring pro- grams. QPCR has a number of decisive advantages over traditional microscopic counting methods, making this a powerful tool for fine spatial and temporal scale detection and enumeration of vertically migrating harmful algal species.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.