Abstract

Abstract Accurate precipitation data are fundamental for understanding and mitigating the disastrous effects of many natural hazards in mountainous areas. Floods and landslides, in particular, are potentially deadly events that can be mitigated with advanced warning, but accurate forecasts require timely estimation of precipitation, which is problematic in regions such as tropical Africa with limited gauge measurements. Satellite rainfall estimates (SREs) are of great value in such areas, but rigorous validation is required to identify the uncertainties linked to SREs for hazard applications. This paper presents results of an unprecedented record of gauge data in the western branch of the East African Rift, with temporal resolutions ranging from 30 min to 24 h and records from 1998 to 2018. These data were used to validate the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) research version and near-real-time products for 3-hourly, daily, and monthly rainfall accumulations, over multiple spatial scales. Results indicate that there are at least two factors that led to the underestimation of TMPA at the regional level: complex topography and high rainfall intensities. The TMPA near-real-time product shows overall stronger rainfall underestimations but lower absolute errors and a better performance at higher rainfall intensities compared to the research version. We found area-averaged TMPA rainfall estimates relatively more suitable in order to move toward regional hazard assessment, compared to data from scarcely distributed gauges with limited representativeness in the context of high rainfall variability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.