Abstract
Predictive Maintenance has become an important component in modern industrial scenarios, as a way to minimize down-times and fault rate for different equipment. In this sense, while machine learning and deep learning approaches are promising due to their accurate predictive abilities, their data-heavy requirements make them significantly limited in real world applications. Since one of the main issues to overcome is lack of consistent training data, recent work has explored the possibility of adapting well-known deep-learning models for image recognition, by exploiting techniques to encode time series as images. In this paper, we propose a framework for evaluating some of the best known time series encoding techniques, together with Convolutional Neural Network-based image classifiers applied to predictive maintenance tasks. We conduct an extensive empirical evaluation of these approaches for the failure prediction task on two real-world datasets (PAKDD2020 Alibaba AI OPS Competition and NASA bearings), also comparing their performances with respect to the state-of-the-art approaches. We further discuss advantages and limitation of the exploited models when coupled with proper data augmentation techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.