Abstract

AbstractThere are significant biases and uncertainties in the simulated soil moisture with land surface models. Here we evaluate multimodel differences in Coupled Model Intercomparison Project Phase 5 (CMIP5) compared to Soil Moisture Active Passive (SMAP) products on different time scales. The variability of surface soil moisture (SSM) within three frequency bands (7–30 days, 30–90 days, and 90–365 days) after normalization is quantified using Fourier transform for the evaluation. Compared to the SMAP observations, the simulated SSM variability within CMIP5 is underestimated in the two higher frequency bands (by 72% and 56%, respectively) and overestimated in the lowest frequency band (by 113%). In addition, these differences concentrate in regions with larger SSM. Finally, these multimodel differences are found to be significantly correlated with mean climate conditions rather than soil texture. This study identifies the spatiotemporal distribution of the model deficiencies within CMIP5 and finds they are systematic in the long‐term simulation on a global scale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.