Abstract

High-throughput screening (HTS) assays for bioactivity in the Tox21 program aim to evaluate an array of different biological targets and pathways, but a significant barrier to interpretation of these data is the lack of high-throughput screening (HTS) assays intended to identify non-specific reactive chemicals. This is an important aspect for prioritising chemicals to test in specific assays, identifying promiscuous chemicals based on their reactivity, as well as addressing hazards such as skin sensitisation which are not necessarily initiated by a receptor-mediated effect but act through a non-specific mechanism. Herein, a fluorescence-based HTS assay that allows the identification of thiol-reactive compounds was used to screen 7,872 unique chemicals in the Tox21 10 K chemical library. Active chemicals were compared with profiling outcomes using structural alerts encoding electrophilic information. Random Forest classification models based on chemical fingerprints were developed to predict assay outcomes and evaluated through 10-fold stratified cross validation (CV). The mean CV Balanced Accuracy of the validation set was 0.648. The model developed shows promise as a tool to screen untested chemicals for their potential electrophilic reactivity based solely on chemical structural features.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.