Abstract

IntroductionAnti-scatter grids efficiently reduce scatter radiation from reaching the imaging receptor, enhancing image quality; however, the patient radiation dose increases in the process. There is disagreement regarding the thickness thresholds for which anti-scatter grids are beneficial. This study aims to establish a thickness threshold for the use of anti-scatter grids to optimise adult knee radiography. MethodsThe study consisted of two phases. In Phase 1 phantom knee radiographs were acquired at varying thicknesses (10–16 cm) and tube voltages (60–80 kV). For each thickness and tube voltage, images with and without an anti-scatter grid were obtained. In Phase 2, two radiologists and three radiographers, evaluated the image quality of these images. Visual Grading Analysis (VGA) scores were analysed using Visual Grading Characteristics (VGC) based on the visualisation of five anatomic criteria. ResultsThe average DAP decreased by 72.1% and mAs by 73.1% when removing the anti-scatter grid. The VGC revealed that overall images taken with an anti-scatter grid have better image quality (AUC ≥0.5 for all comparisons). However, the anti-scatter grids could be removed for thicknesses 10, 12 and 14 cm in conjunction with using 80 kVp,. ConclusionAnti-scatter grids can be removed when imaging adult knees between 10 and 12 cm using any kVp setting since the radiation dose is reduced without significantly affecting image quality. For thicknesses >12 cm, the use of anti-scatter grids significantly improves image quality; however, the radiation dose to the patient is increased. The exception is at 14 cm used with 80 kVp, where changes in image quality were insignificant. Implications for practiceOptimisation by removing anti-scatter grids in adult knee radiography seems beneficial below 12 cm thickness with any kVp value. Since the average knee thickness ranges between 10 and 13 cm, anti-scatter grid can be removed for most patients. Nevertheless, further studies are recommended to test if this phantom-based threshold applies to human subjects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call