Abstract

To date, there have not been great breakthroughs in immunotherapy for HER2 positive breast cancer (HPBC). This study aimed to build a risk model that might contribute to predicting prognosis and discriminating the immune landscape in patients with HPBC. We analyzed the tumor immune profile of HPBC patients from the TCGA using the ESTIMATE algorithm. Thirty survival-related differentially expressed genes were selected according to the ImmuneScore and StromalScore. A prognostic risk model consisting of PTGDR, PNOC and CCL23 was established by LASSO analysis, and all patients were classified into the high- and low-risk score groups according to the risk scores. Subsequently, the risk model was proven to be efficient and reliable. Immune related pathways were the dominantly enriched category. ssGSEA showed stronger immune infiltration in the low-risk score group, including the infiltration of TILs, CD8 T cells, NK cells, DCs, and so on. Moreover, we found that the expression of immune checkpoint genes, including PD-L1, CTLA-4, TIGIT, TIM-3 and LAG-3, was significantly upregulated in the low-risk score group. All the results were validated with corresponding data from the GEO database. In summary, our investigation indicated that the risk model composed of PTGDR, PNOC and CCL23 has potential to predict prognosis and evaluate the tumor immune microenvironment in HPBC patients. More importantly, HPBC patients with a low-risk scores are likely to benefit from immune treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call