Abstract

It is essential for the survival and reproduction of parasitoids to adapt to the fluctuating host resources. Phenotypic plasticity may enable a parasitoid species to successfully achieve its control over a range of host species to maximize fitness in different hosts that may each require dissimilar, possibly conflicting, specific adaptations. However, there is limited information on how the fitness effects of host switching partition into costs due to the novelty of host species, where unfamiliarity with host physiological and morphological changes and its anti-parasite defenses reduces parasitoid growth, survivorship and/or reproductive success. In this study, the parasitoid fungus Ophiocordyceps unilateralis sensu lato was found to sympatrically infect a principal host ant species and other alternative sympatric hosts in the forest of central Taiwan. We herein report that the occurrence of ant infections by O. unilateralis s.l. shows spatial and temporal variation patterns on different host species. Results showed that the height from the ground to the leaf where the infected ants grip on, perithecia-forming ability, and growth rate of the stroma of the parasitoid fungus were dissimilar on different host species. These host range expansions not only related the fitness of O. unilateralis s.l. but also influenced the expression of extended phenotypic traits. Our findings revealed that a generalist parasitoid fungus suffered an evolutionary tradeoff between host breadth expansion and host-use efficiency.

Highlights

  • Parasites can indirectly affect the behavior and physiology of their hosts in ways fit only for science fiction, a phenomenon that fascinates both scientists and nonscientists alike

  • Based on the morphological traits of ants, the fungus O. unilateralis s.l. was found on eight ant hosts including Polyrhachis mesota, P. wolfi, P. vigilans, P. latona, P. debilis, P. illaudata, P. dives, and Camponotus punctatissimus

  • The results of our molecular phylogenetic analyses revealed that a single species of O. unilateralis (i.e. OTU1) could infect at least eight different ant species in the forest of central Taiwan

Read more

Summary

Introduction

Parasites (or parasitoids) can indirectly affect the behavior and physiology of their hosts in ways fit only for science fiction, a phenomenon that fascinates both scientists and nonscientists alike. Such behaviors are known as the extended phenotypes of these parasites and are parsimoniously explained as the capacity of parasites to express their genes to modify the host behavior. Ophiocordyceps unilateralis (Clavicipitaceae: Hypocreales), referred to as a “zombie fungus,” is a fungal pathogen considered specific to ants of the tribe Camponotini (Formicinae: Formicidae). This entomopathogen currently found predominantly in tropical forest ecosystems[9]. This study showed the patterns of alternative host use and unraveled fascinating questions regarding the influence of phenotypic plasticity to the use of a large host spectrum by a generalist parasitoid

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call