Abstract
Many environmental issues have arisen as a result of the widespread usage of concrete, which has led to a reduction of river sand. The excessive extraction of river sand has led to various negative consequences, such as ecosystem disruption, groundwater depletion, coastal erosion, and biodiversity loss. Manufactured sand (MS) from waste deposits may be used in lieu of river sand to address this problem. In this study, to facilitate the production of manufactured sand concrete (MSC), the potential of twelve machine learning (ML)-based models was examined. These models were trained and tested on 248 and 62 laboratory datasets containing nine features effective on the mechanical properties of MSC. MSC's splitting tensile strength (STS) was considered the model's target. The influences that the water-to-cement (W/C) ratio, the stone nano-powder content (SNPC), and the curing age (CA) have on the STS of MSC were also analyzed. Detailed analysis of the results revealed that all the well-tuned ML models have acceptable potential for estimating the STS of MSC; however, the extra tree regressor (ETR) model was in the highest agreement with the laboratory results. Both the ML and laboratory findings showed that MSC with 10% SNPC benefits the long-term STS of MSC. A graphical user interface for the ML-based models was also developed to further aid in the estimation of STS for engineering challenges.The proposed models can be a suitable alternative to time-consuming, expensive, and complex laboratory methods to facilitate the MSC production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.