Abstract
Due to the various influencing factors on river suspended sediment transportation, determining an appropriate input combination for developing the suspended sediment load forecasting model is very important for water resources management. The influence of pre-processing of input variables by Gamma Test (GT) was investigated on performance of Support Vector Machine (SVM) with two kernels; Radial Basis Function (RBF) and polynomial in order to forecast daily suspended sediment amount in the period between 1983 and 2014 at Korkorsar basin, northern Iran. The best input combination was identified using GT and correlation coefficient analysis. Then, the SVM model was developed and the suspended sediment amount was forecasted with RBF and polynomial kernels. The obtained results in testing phase showed that GT-SVM (RBF kernel) model can estimate suspended sediment more accurately with the lowest RMSE (14.045 ton/day), highest correlation coefficient (0.88) and highest NSEC coefficient (0.88) than SVM (RBF kernel) model (RMSE = 18.36ton/day, \( {R}^2=0.79, \) \( NSEC=0.73 \)) and had a better performance than the other models. The results indicated that in forecasting the first nine maximum values of suspended sediment load, GT-SVM (RBF) had a higher capability than the other models and could provide a more accurate estimation from the maximum rate of suspended sediment. The results of this study showed the capability of identifying the priority of the input parameters can change GT to a useful and technical test for input variables pre-processing to forecast the amount of suspended sediments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.