Abstract
Abstract The cementitious composite’s resistance to the introduction of harmful ions is the primary criterion that is used to evaluate its durability. The efficacy of glass and eggshell powder in cement mortar exposed to 5% sulfuric acid solutions was investigated in this study using artificial intelligence (AI)-aided approaches. Prediction models based on AI were built using experimental datasets with multi-expression programming (MEP) and gene expression programming (GEP) to forecast the percentage decrease in compressive strength (CS) after acid exposure. Furthermore, SHapley Additive exPlanations (SHAP) analysis was used to examine the significance of prospective constituents. The results of the experiments substantiated these models. High coefficient of determination (R 2) values (MEP: 0.950 and GEP: 0.913) indicated statistical significance, meaning that test results and anticipated outcomes were consistent with each other and with the MEP and GEP models, respectively. According to SHAP analysis, the amount of eggshell and glass powder (GP) had the most significant link with CS loss after acid deterioration, showing a positive and negative correlation, respectively. In order to optimize efficiency and cost-effectiveness, the created models possess the capability to theoretically assess the decline in CS of GP-modified mortar across various input parameter values.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.