Abstract

Many distributed systems must be scalable, meaning that they must be economically deployable in a wide range of sizes and configurations. This paper presents a scalability metric based on cost-effectiveness, where the effectiveness is a function of the system's throughput and its quality of service. It is part of a framework which also includes a sealing strategy for introducing changes as a function of a scale factor, and an automated virtual design optimization at each scale factor. This is an adaptation of concepts for scalability measures in parallel computing. Scalability is measured by the range of scale factors that give a satisfactory value of the metric, and good scalability is a joint property of the initial design and the scaling strategy. The results give insight into the scaling capacity of the designs, and into how to improve the design. A rapid simple bound on the metric is also described. The metric is demonstrated in this work by applying it to some well-known idealized systems, and to real prototypes of communications software.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.