Abstract

A protocol was recently developed to compare calendar life using a constant potential while monitoring the electrical current required to maintain the potential. Here, this calendar life protocol is used with electrolyte formulations containing various mole fractions of ethylene carbonate (EC), ethyl methyl carbonate (EMC), and LiPF6 to elucidate the role each component plays in passivation for high silicon anodes. Together, EC and LiPF6 lead to higher currents, and thus poorer passivation, whereas EMC acts as a spectator. The variation of the components’ mole fraction also changes the solid-electrolyte interphase (SEI) composition, as measured by x-ray photoelectron spectroscopy. Importantly, higher LiPF6 content leads to increased LiF as well as increased current, indicating that higher LiF content does not enhance the passivation of the silicon surface. Finding that EC did not yield a passivating SEI, instead ethylene sulfite, sulfolane, and propylene carbonate (PC) were used in place of EC. Using ethylene sulfite and sulfolane resulted in poorer passivation compared to EC, whereas PC resulted in superior passivation. The superior passivation may be related to more stable lithium-solvent complexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.