Abstract
In biosand filters (BSF), treatment is largely driven by the development of a biolayer (schmutzdecke) which establishes itself during the startup phase. In this study, the effect of changing influent total organic carbon (TOC) loading on the removal efficiency of Vibrio cholerae in laboratory-operated BSFs was quantified. BSFs were charged with high, medium or low TOC influents and removal efficacy and schmutzdecke composition was monitored over 2months. The highest V. cholerae removal efficiencies were observed in the BSF receiving the lowest TOC. Schmutzdecke composition was found to be influenced by influent TOC, in terms of microbial community structure and amount of extracellular polymeric substance (EPS). Physical/chemical attachment was shown to be important during startup. The BSF receiving influent water with lower TOC had a higher attachment coefficient than the BSF receiving high TOC water, suggesting more physical/chemical treatment in the lower TOC BSF. The high TOC BSF had more EPS than did the biofilm from the low-TOC BSF, suggesting that schmutzdecke effects may be more significant at high TOC. Overall, this study confirms that influent water characteristics will affect BSF treatment efficacy of V. cholerae especially during the startup phase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.