Abstract
Production of nitric oxide (NO) has been implicated in methamphetamine (METH)-induced dopamine (DA) neurotoxicity. The source of this NO has not been clearly delineated, but recent evidence suggests that it arises from activation of neuronal nitric oxide synthase (nNOS), which is selectively expressed in a subpopulation of striatal interneurons. Our objective was to determine whether inhibiting activation of nNOS-containing interneurons in the striatum blocks METH-induced neurotoxicity. These interneurons selectively express the neurokinin-1 (NK-1) receptor, which is activated by substance P. One particular toxin, a conjugate of substance P to the ribosome-inactivating protein saporin (SSP-SAP), selectively destroys neurons expressing the NK-1 receptor. Thus, we examined the extent to which depletion of the nNOS-containing interneurons alters production of NO and attenuates METH-induced neurotoxicity. The SSP-SAP lesions resulted in significant loss of nNOS-containing interneurons throughout striatum. Surprisingly, this marked deletion did not confer resistance to METH-induced DA neurotoxicity, even in areas devoid of nNOS-positive cells. Furthermore, these lesions did not attenuate NO production, even in areas lacking nNOS. These data suggest that nNOS-containing interneurons either are not necessary for METH-induced DA neurotoxicity or produce NO that can diffuse extensively through striatal tissue and thereby still mediate neurotoxicity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.