Abstract

During a Phase-I effort, studies were planned to evaluate deterministic (nonstochastic) effects of chronic exposure of nuclear workers at the Mayak atomic complex in the former Soviet Union to relatively high levels (> 0.25 Gy) of ionizing radiation. The Mayak complex has been used, since the late 1940's, to produce plutonium for nuclear weapons. Workers at Site A of the complex were involved in plutonium breeding using nuclear reactors, and some were exposed to relatively large doses of gamma rays plus relatively small neutron doses. The Weibull normalized-dose model, which has been set up to evaluate the risk of specific deterministic effects of combined, continuous exposure of humans to alpha, beta, and gamma radiations, is here adapted for chronic exposure to gamma rays and neutrons during repeated 6-h work shifts--as occurred for some nuclear workers at Site A. Using the adapted model, key conclusions were reached that will facilitate a Phase-II study of deterministic effects among Mayak workers. These conclusions include the following: (1) neutron doses may be more important for Mayak workers than for Japanese A-bomb victims in Hiroshima and can be accounted for using an adjusted dose (which accounts for neutron relative biological effectiveness); (2) to account for dose-rate effects, normalized dose X (a dimensionless fraction of an LD50 or ED50) can be evaluated in terms of an adjusted dose; (3) nonlinear dose-response curves for the risk of death via the hematopoietic mode can be converted to linear dose-response curves (for low levels of risk) using a newly proposed dimensionless dose, D = X(V), in units of Oklad (where D is pronounced "deh"), and V is the shape parameter in the Weibull model; (4) for X < or = Xo, where Xo is the threshold normalized dose, D = 0; (5) unlike absorbed dose, the dose D can be averaged over different Mayak workers in order to calculate the average risk of death via the hematopoietic mode for the population exposed at Site A; and (6) the expected cases of death via the hematopoietic syndrome mode for Mayak workers chronically exposed during work shifts at Site A to gamma rays and neutrons can be predicted using ln(2)B M[D]; where B (pronounced "beh") is the number of workers at risk (criticality accident victims excluded); and M[D] is the average (mean) value of D (averaged over the worker population at risk, for Site A, for the time period considered). These results can be used to facilitate a Phase II study of deterministic radiation effects among Mayak workers chronically exposed to gamma rays and neutrons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.