Abstract
HypothesisThe macroscopic properties of carbon black suspensions are primarily determined by the agglomerate microstructure built of primary aggregates. Conferring colloidal stability in aqueous carbon black suspensions should thus have a drastic impact on their viscosity and conductivity. ExperimentsCarbon black was treated with strong acids following a wet oxidation procedure. An analysis of the resulting particle surface chemistry and electrophoretic mobility was performed in evaluating colloidal stability. Changes in suspension microstructure due to oxidation were observed using small-angle X-ray scattering. Utilizing rheo-electric measurements, the evolution of the viscosity and conductivity of the carbon black suspensions as a function of shear rate and carbon content was thoroughly studied. FindingsThe carboxyl groups installed on the carbon black surface through oxidation increased the surface charge density and enhanced repulsive interactions. Electrostatic stability inhibited the formation of the large-scale agglomerates in favor of the stable primary aggregates in suspension. While shear thinning, suspension conductivities were found to be weakly dependent on the shear intensity regardless of the carbon content. Most importantly, aqueous carbon black suspensions formulated from electrostatically repulsive primary aggregates displayed a smaller rise in conductivity with carbon content compared to those formulated from attractive agglomerates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.