Abstract

When a semiconductor is under photoexcitation, the voltage response to a temperature gradient is the photo-Seebeck effect. Here we study this effect, focusing on the contribution from transport of photo-excited carriers. We demonstrate that by combining photo-Seebeck with photoconductivity measurements, one can determine the ratio between electron and hole mobilities, and hence both of them when one is known. This is found for the case of defect-free samples, where no detail on the absorbance, carrier lifetime or recombination is necessary. Our method reported here does not require chemical doping, which could introduce defects and is often not feasible. It applies to both thin film and bulk samples. Experiment-wise, photo-Seebeck effect is relatively easy to implement, or added to existing systems. In a broader context, for semiconductors with significant influence from defects, our result suggests that the photo-Seebeck behavior can still be understood. In this case another photo-transport property is necessary, in order to identify the mobilities of carriers and information regarding the defects. This framework integrates the information from photoexcitation and thermal gradients to provide a general method to determine fundamental electronic properties of materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.