Abstract

AbstractDeep learning models are extensively used but often lack transparency due to their complex internal mechanics. To bridge this gap, the field of explainable AI (XAI) strives to make these models more interpretable. However, a significant obstacle in XAI is the absence of quantifiable metrics for evaluating explanation quality. Existing techniques, reliant on manual assessment or inadequate metrics, face limitations in scalability, reproducibility, and trustworthiness. Recognizing these issues, the current study specifically addresses the quality assessment of visual explanations in medical imaging, where interpretability profoundly influences diagnostic accuracy and trust in AI-assisted decisions. Introducing novel criteria such as informativeness, localization, coverage, multi-target capturing, and proportionality, this work presents a comprehensive method for the objective assessment of various explainability algorithms. These newly introduced criteria aid in identifying optimal evaluation metrics. The study expands the domain’s analytical toolkit by examining existing metrics, which have been prevalent in recent works for similar applications, and proposing new ones. Rigorous analysis led to selecting Jensen–Shannon divergence (JS_DIV) as the most effective metric for visual explanation quality. Applied to the multi-label, multi-class diagnosis of thoracic diseases using a trained classifier on the CheXpert dataset, local interpretable model-agnostic explanations (LIME) with diverse segmentation strategies interpret the classifier’s decisions. A qualitative analysis on an unseen subset of the VinDr-CXR dataset evaluates these metrics, confirming JS_DIV’s superiority. The subsequent quantitative analysis optimizes LIME’s hyper-parameters and benchmarks its performance across various segmentation algorithms, underscoring the utility of an objective assessment metric in practical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.