Abstract

This paper examines the precision of estimators of Quantile-Based Risk Measures (Value at Risk, Expected Shortfall, Spectral Risk Measures). It first addresses the question of how to estimate the precision of these estimators, and proposes a Monte Carlo method that is free of some of the limitations of existing approaches. It then investigates the distribution of risk estimators, and presents simulation results suggesting that the common practice of relying on asymptotic normality results might be unreliable with the sample sizes commonly available to them. Finally, it investigates the relationship between the precision of different risk estimators and the distribution of underlying losses (or returns), and yields a number of useful conclusions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.