Abstract

AbstractOrganic carbon (C) plays an essential role in the denitrification process as it supplies energy for N2O, N2 and CO2 producing reactions. The objectives of this study were to: (i) rank the reactivity of different C compounds found in manures based on their availability for denitrification and (ii) explore C-quality in different C sources based on their capacity to promote denitrification. Evaluation of different C-sources in promoting denitrification was conducted based on the molar ratio of CO2 production to NO3− reduction after incubation. Results of the first experiment (a 12-day investigation) showed that glucose and glucosamine were highly reactive C compounds with all applied NO3− being exhausted by day 3, and glucosamine had significantly high amount of NH4+-N present at end of the experiment. The glucose and glucosamine treatments resulted in significantly greater cumulative CO2 production, compared to the other treatments. In the second experiment (a 9-day investigation), all NO3− had been depleted by day 6 and 9 from acetic acid and glucose, respectively, and the greatest cumulative CO2 production was from acetic acid. The CO2 appearance to NO3− molar ratios revealed that glucose and glucosamine were compounds with highly available C in the first experiment. In the second experiment, the pig slurry and acetic acid were found to be C-sources that promoted potential denitrification. The application of slurry to soil results in the promotion of denitrification and this depends on the availability of the C compounds it contains. Understanding the relationship between C availability and denitrification potential is useful for developing denitrification mitigation strategies for organic soil amendments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.