Abstract
Bioaugmentation technology for improving the performance of thermophilic anaerobic digestion (TAD) of food waste (FW) treatment is gaining more attention. In this study, four thermophilic strains (Ureibacillus suwonensis E11, Clostridium thermopalmarium HK1, Bacillus thermoamylovorans Y25 and Caldibacillus thermoamylovorans QK5) were inoculated in the TAD of FW system, and the biochemical methane potential (BMP) batch study was conducted to assess the potential of different bioaugmented strains to enhance methane production. The results showed that the cumulative methane production in groups inoculated with E11, HK1, Y25 and QK5 improved by 2.05%, 14.54%, 19.79% and 9.17%, respectively, compared with the control group with no inoculation. Moreover, microbial community composition analysis indicated that the relative abundance of the main hydrolytic bacteria and/or methanogenic archaea was increased after bioaugmentation, and the four strains successfully became representative bacterial biomarkers in each group. The four strains enhanced methane production by strengthening starch, sucrose, galactose, pyruvate and methane metabolism functions. Further, the correlation networks demonstrated that the representative bacterial genera had positive correlations with the differential metabolic functions in each bioaugmentation group. This study provides new insights into the TAD of FW with bioaugmented strains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.