Abstract

Lichens exist in an organismal organization of mycobiont, photobiont, and non-photoautotrophic bacteria. These organisms contribute to the growth of lichens even in poor nutrition substrates. However, studies on the isolation and application of non-photoautotrophic bacteria in plant growth and biocontrol are scanty. Therefore, a study was conducted to isolate and evaluate the potential of non-photoautotrophic bacteria from lichen tissues in maize plant growth promotion and biocontrol of plant pathogens (fungi and bacteria). Five bacterial strains were isolated and tested for their ability to produce indole-3-Acetic Acid (IAA). One bacterium named YZCUO202005 produced IAA, siderophores and biofilms, solubilized phosphate and potassium and exhibited extracellular enzymes (cellulases, proteases, amylase, and β −1,3-Glucanase). Based on the 16S rRNA sequence analysis results, YZCUO202005 was identified as Bacillus licheniformis. The strain inhibited the growth of five pathogenic fungi with an inhibition percent of between 58.7% and 71.7% and two pathogenic bacteria. Under greenhouse conditions, YZCUO202005 was tested for its abilities to enhance maize seed germination, and vegetative growth. Compared with the control treatment, the strain significantly enhanced the growth of stem length (i.e. 18 ± 0.64 cm, 78 ± 0.92 cm), leaf length (i.e. 10 ± 0.36 cm, 57 ± 1.42 cm), leaf chlorophyll levels (i.e., 13 ± 0.40, 40 ± 0.43 SPAD), and root length (i.e, 9.8 ± 2.25 cm, 22.5 ± 6.59 cm). Our results demonstrated that B. licheniformis YZCUO202005 from lichens has the potential to promote plant growth and reduce fungal and bacterial pathogens’ growth. Furthermore, the results suggest that lichens are naturally rich sources of plant growth promotion and biocontrol agents that would be used in agriculture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call