Abstract

Solid-State Fermentation (SSF) offers a valuable process for converting agri-food by-products (AFBP) into high-value metabolites, with Yarrowia lipolytica 2.2ab (Yl2.2ab) showing significant potential under laboratory-scale controlled conditions; however, its assessment in larger-scale bioreactor scenarios is needed. This work evaluates Yl2.2ab’s performance in a bench-scale custom-designed packed-tray bioreactor. Key features of this bioreactor design include a short packing length, a wall-cooling system, and forced aeration, enhancing hydrodynamics and heat and mass transfer within the tray. Preliminary studies under both abiotic and biotic conditions assessed Yl2.2ab’s adaptability to extreme temperature variations. The results indicated effective oxygen transport but poor heat transfer within the tray bed, with Yl2.2ab leading to a maximum growth rate of 28.15 mgx gssdb−1 h−1 and maximum production of proteases of 40.10 U gssdb−1 h−1, even when temperatures at the packed-tray outlet were around 49 °C. Hybrid-based modeling, incorporating Computational Fluid Dynamics (CFD) and Pseudo-Continuous Simulations (PCSs), elucidated that the forced-aeration system successfully maintained necessary oxygen levels in the bed. However, the low thermal conductivity of AFBP posed challenges for heat transfer. The bioreactor design presents promising avenues for scaling up SSF to valorize AFBP using Yl2.2ab’s extremophilic capabilities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.