Abstract
Connected and autonomous vehicles (CAVs) are emerging technology that attracts the interests of many transportation professionals and computational scientists. Several recent studies have investigated different model frameworks of CAVs in different transportation environments, such as on freeways and at conventional intersections. Nevertheless, few efforts have been made to investigate the performances of CAVs at innovative intersections, and the lack of knowledge can result in an inaccurate prediction of CAVs performances in the existing transportation network. This research intends to mitigate this research gap by studying the traffic delay and fuel consumption of CAVs in the environment of the superstreet and its equivalent conventional intersection through simulation-based experiments. A real-world superstreet in Leeland, NC, is selected and used. A conventional intersection with equivalent road designs is established in the simulation platform to make a comparison with the selected superstreet. This research develops both platooning and trajectory planning modeling frameworks to examine the implications of CAVs with different capabilities. The Intelligent Driver Model (IDM) is selected and applied to model the CAV behaviors, while Wiedemann 99 (W99) is used to model Human-Driven Vehicles (HDVs). The simulation results demonstrate the efficiency of both platooning and trajectory planning, respectively. Different effects of CAVs in the superstreet and its equivalent conventional intersection are observed. The findings from this research can provide an important reference for transportation planners and policymakers in predicting the influence of CAVs on the existing transportation infrastructure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.