Abstract

Zircon crystals offer a unique combination of suitability for high-precision radiometric dating and high resistance to alteration. Paleomagnetic experiments on ancient zircons may potentially constrain the history of the earliest geodynamo, which would hold broad implications for the early Earth's interior and atmosphere. However, the ability of zircons to record accurately the geomagnetic field has not been demonstrated. Here we conduct thermal and alternating field (AF) paleointensity experiments on 767.1 thousand year old (ka) zircons from the Bishop Tuff, California. The rapid emplacement of these zircons in a well-characterized magnetic field provides a high-fidelity test of the zircons' intrinsic paleomagnetic recording accuracy. Successful dual heating experiments on eleven zircons measured using a superconducting quantum interference device (SQUID) microscope yield a mean paleointensity of 54.1±6.8μT (1σ; 42.6±5.3μT after excluding possible maghemite-bearing zircons), which is consistent with high-precision results from Bishop Tuff whole rock (43.0±3.2μT). High-resolution quantum diamond magnetic (QDM) mapping, electron microscopy, and X-ray tomography indicate that the bulk of the remanent magnetization in Bishop Tuff zircons is carried by Fe oxides associated with apatite inclusions, which may be susceptible to destruction via metamorphism and aqueous alteration in older zircons. As such, while zircons can reliably record the geomagnetic field, robust zircon-derived paleomagnetic results require careful characterization of the ferromagnetic carrier and demonstration of their occurrence in primary inclusions. We further conclude that a combination of quantum diamond magnetometry and high-resolution imaging can provide detailed, direct characterization of the ferromagnetic mineralogy of geological samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call