Abstract

In the search for an alternative energy source with lesser pollution for transportation needs, bio-oil, a denser and viscous fuel that needs a transesterification process, have been widely considered for diesel engines. However, these problems are solved by using low viscous biofuel, but this improvement also significantly leads to increased NOx emission. Hence this present study investigates the usage of a low viscous biofuel in the CRDI engine with measures to reduce NOx emission through water injection technique. The low viscous bio-oil was used in this study along with an ignition enhancer (di-tert-butyl-peroxide), non-metallic nano additive (rice husk). They were tested in a constant speed, single-cylinder, diesel engine for various loads. Considering the brake thermal efficiency (BTE), 2% and 150 ppm were selected as the optimum value after testing five ratios (1%, 1.5%, 2%, 2.5% and 3%) of di tert butyl peroxide (DTBP) and four ratios (50, 100, 150 and 200 ppm) of rice husk (RH). The lemon peel oil (LPO) with the optimum additive ratio produced 30.69% BTE, which was 4.7% lesser than diesel fuel. A considerable decrease in fuel consumption and emissions except for nitrogen oxides (NOx) is recorded. NOx emission increased by 17.3% for the biofuel blend containing RH and DTBP. To control NOx emission, 2% of water was injected into the intake manifold with the fresh intake air. Two percent by vol. was finalised after experimenting four ratios (1%, 2%, 3% and 4%) of water addition. This 2% water reduces 11% of NOx emission and affects the other outputs, denoted with the 8.9% reduced BTE value compared with diesel fuel. Thus, the LPOC combination proved to operate well in the CRDI engine and produces lower NOx emissions than other LPO blends.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.