Abstract

Microbial source tracking techniques are used in the UK to provide an evidence-base to guide major expenditure decisions and/or regulatory action relating to sewage disposal. Consequently, it is imperative that the techniques used robustly index faecal indicator organisms (FIOs) that are the regulatory parameters for bathing and shellfish harvesting areas. This study reports a ‘field-scale’ test of microbial source tracking (MST) based on the quantitative PCR analyses of Bacteroidales 16S rRNA genetic marker sequences. The project acquired data to test the operational utility of quantitative Bacteroidales MST data, comparing it with FIO concentrations in streams, effluents and bathing waters. Overall, the data did not exhibit a consistent pattern of significant correlations between Bacteroidales MST parameters and FIOs within the different sample matrices (i.e. rivers, bathing waters and/or effluents). Consequently, there was little evidence from this study that reported concentrations and/or percentages of human and/or ruminant faecal loadings (that are based on Bacteroidales MST gene copy numbers) offer a credible evidence-base describing FIO contributions to receiving water ‘non-compliance’. The study also showed (i) there was no significant attenuation of the Bacteroidales gene copy number ‘signal’ through the UV disinfection process; and (ii) single non-compliant samples submitted for Bacteroidales MST analysis, do not reliably characterise the balance of faecal loadings due to the high variability in the MST signal observed. At this stage in the development of the MST tool deployed, it would be imprudent to use the percentage human and/or ruminant contributions (i.e. as indicated by MST data acquired at a bathing water) as the sole or principal element in the evidence-base used to guide major expenditure decisions and/or regulatory action.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call