Abstract

Fecal contamination of water is very common, and, in the United States, prevention is complicated by the colossal span of waterways (>3.5 million miles), heterogeneous sources of pollution, and competing interests in water monitoring. The focus of this study was the Upper Sugar Creek Watershed, a mixed-use watershed with many headwater streams and one of the most contaminated waterways in Ohio. Quantitative polymerase chain reaction (qPCR) and host-specific PCR for were evaluated for the potential to discern sources of fecal contamination. Pathogen-specific qPCR and culturable by most probable number (MPN) were compared at 21 established water quality monitoring sites in the watershed headwaters. Lower numbers of ruminant-specific markers were detected in the base flow water samples compared with the human-specific marker, suggesting the presence of hotspots of human fecal contamination. qPCR and MPN showed significant correlation ( = 0.57; < 0.001). Correlation between general fecal indicator and pathogen concentrations was weak or nonexistent. Coexistence of and human-specific was common ( = 0.015). qPCR may have a greater potential for predicting fecal contamination due to its sensitivity, rapid analysis, and availability of host-specific assays. However, the lack of a strong correlation between pathogens and general fecal indicators suggests that assessment of health risk associated with fecal contamination will require a complement of approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.