Abstract

BackgroundDue to rising food insecurity, natural resource scarcity, population growth, and the cost of and demand for animal proteins, insects as food have emerged as a relevant topic. This study examines the nutrient content of the palm weevil larva (Rhynchophorus phoenicis), a traditionally consumed edible insect called akokono in Ghana, and assesses its potential as an animal-source, complementary food.MethodsAkokono in two “unmixed” forms (raw, roasted) and one “mixed” form (akokono-groundnut paste) were evaluated for their macronutrient, micronutrient, amino acid, and fatty acid profiles.ResultsNutrient analyses revealed that a 32 g (2 tbsp.) serving of akokono-groundnut paste, compared to recommended daily allowances or adequate intakes (infant 7–12 months; child 1–3 years), is a rich source of protein (99%; 84%), minerals [copper (102%; 66%), magnesium (54%; 51%), zinc (37%; 37%)], B-vitamins [niacin (63%; 42%), riboflavin (26%; 20%), folate (40%; 21%)], Vitamin E (a-tocopherol) (440%; 366%), and linoleic acid (165%; 108%). Feed experiments indicated that substituting palm pith, the typical larval diet, for pito mash, a local beer production by-product, increased the carbohydrate, potassium, calcium, sodium, and zinc content of raw akokono. Akokono-groundnut paste meets (within 10%) or exceeds the levels of essential amino acids specified by the Institute of Medicine criteria for animal-source foods, except for lysine.ConclusionsPairing akokono with other local foods (e.g., potatoes, soybeans) can enhance its lysine content and create a more complete dietary amino acid profile. The promotion of akokono as a complementary food could play an important role in nutrition interventions targeting children in Ghana.

Highlights

  • Due to rising food insecurity, natural resource scarcity, population growth, and the cost of and demand for animal proteins, insects as food have emerged as a relevant topic

  • The Food and Agriculture Organization estimates that approximately 2 billion people worldwide consume insects as part of their diets, [12] and Jongema [13] has documented over 2000 species of edible insects consumed globally

  • The purpose of this study is to examine the nutrient profile of akokono to characterize the potential of this insect as an ingredient in complementary foods

Read more

Summary

Introduction

Due to rising food insecurity, natural resource scarcity, population growth, and the cost of and demand for animal proteins, insects as food have emerged as a relevant topic. This study examines the nutrient content of the palm weevil larva (Rhynchophorus phoenicis), a traditionally consumed edible insect called akokono in Ghana, and assesses its potential as an animal-source, complementary food. Against a backdrop of global trends such as urbanization, growing populations, and rising incomes, the global food system faces the looming challenge of meeting the world’s evolving nutritional needs [2]. Animal-source foods (ASFs) are important components of diverse diets, providing protein and essential (2020) 6:7. In the context of locally-sourced diets in LMICs, where the burden of malnutrition is highest, edible insects can contribute essential nutrients necessary to augment dietary quality and diversity among individuals who primarily consume cereal-based foods [16]. The nutritional profiles of edible insects indicate substantial variability both between and within species [17, 18] and comprehensive analyses of both macronutrient and micronutrient content are lacking [19]

Objectives
Methods
Results
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call