Abstract

Remote sensing products provide a vital understanding of wildfire effects across a landscape, but detection and delineation of low- and mixed-severity fire remain difficult. Although data provided by the Monitoring Trends in Burn Severity (MTBS) project are frequently used to assess severity in the United States, alternative indices can offer improvement in the measurement of low-severity fire effects and would be beneficial for future product development and adoption. This research note evaluated one such alternative, the Mid-Infrared Bi-Spectral Index (MIRBI), which was developed in savannah ecosystems to isolate spectral changes caused by burning and reduce noise from other factors. MIRBI, differenced MIRBI (dMIRBI) and burn severity indices used by MTBS were assessed for spectral optimality at distinguishing severity and the ability to differentiate between unburned and burned canopy in a conifer forest. The MIRBI indices were better at isolating changes caused by burning and demonstrated higher spectral separability, particularly at low severity. These findings suggest that MIRBI indices can provide an enhanced alternative or complement to current MTBS products in high-canopy-cover forests for applications such as discernment of fire perimeters and unburned islands, as well as identification of low-severity fire effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.