Abstract

Abstract. A limitation of the Met Office operational data assimilation scheme is that surface-sensitive infrared satellite sounding channels cannot be used during daytime periods where numerical weather prediction (NWP) model background land surface temperature (LST) biases are greater than 2 K in magnitude. The Met Office Unified Model (UM) has a significant cold LST bias in semi-arid regions when compared with satellite observations; a range of UM configurations were assessed with different model resolutions, land surface cover datasets and bare soil parameterisations. UM LST biases were evaluated at global resolution and in a limited area model (LAM) at a 2.2 km resolution over the SALSTICE (Semi-Arid Land Surface Temperature and IASI Calibration Experiment) experimental domain in south-eastern Arizona. This validation is in conjunction with eddy-covariance flux tower measurements. LST biases in the Global Atmosphere/Land 3.1 (GA/L3.1) configuration were largest in the mid-morning with respect to Moderate Resolution Imaging Spectroradiometer (MODIS) Terra (-13.6±2.8 K at the Kendall Grassland site). The diurnal cycle of LST in Global Atmosphere/Land 6.1 (GA/L6.1) showed a significant improvement relative to GA/L3.1 with the cold LST biases reduced to -1.4±2.7 K and -3.6±3.0 K for Terra and Aqua overpasses, respectively. The higher-resolution LAM showed added value over the global configurations. The spatial distribution of the LST biases relative to MODIS and the modelled bare soil cover fraction were found to be moderately correlated (0.61±0.08) during the daytime, which suggests that regions of cold LST bias are associated with low bare soil cover fraction. Coefficients of correlation with the shrub surface fractions followed the same trend as the bare soil cover fraction, although with a less significant correlation (0.36±0.09), and indicated that the sparse vegetation canopies in south-eastern Arizona are not well represented in UM ancillary datasets. The x component of the orographic slope was positively correlated with the LST bias (0.41±0.05 for MODIS Aqua) and identified that regions of cold model LST bias are found on easterly slopes, and regions of warm model LST bias are found on westerly slopes. An overestimate in the modelled turbulent heat and moisture fluxes at the eddy-covariance flux sites was found to be coincident with an underestimate in the ground heat flux.

Highlights

  • Infrared radiance data from hyperspectral satellite sounding spectrometers make up the largest proportion of assimilated data at the Met Office and over the last 2 decades have had the greatest forecast impact of any type of observation currently assimilated (English et al, 2000; Cardinali, 2009)

  • The Global Atmosphere” (GA)/L3.1 diurnal cycle (Fig. 2a) highlights a cold model prediction when compared with Moderate Resolution Imaging Spectroradiometer (MODIS) retrievals; daytime biases are in the ranges of −13.6 ± 2.8 K and −8.8 ± 2.5 K for Terra and Aqua overpasses, respectively

  • Biases in modelled land surface temperature (LST) are larger in the mid-morning associated with the Terra overpass which indicates that the model struggles to capture the magnitude of the warming from the morning transition to the late morning period

Read more

Summary

Introduction

Infrared radiance data from hyperspectral satellite sounding spectrometers make up the largest proportion of assimilated data at the Met Office and over the last 2 decades have had the greatest forecast impact of any type of observation currently assimilated (English et al, 2000; Cardinali, 2009). The assimilation of a small selection of hyperspectral channels has been shown to improve estimates of temperature and humidity profiles for the initial state of numerical weather prediction (NWP) forecasts (Hilton et al, 2012). A significant limitation of the assimilation scheme is that surface-sensitive hyperspectral channels cannot be used during daytime periods due to biases in the NWP. Brooke et al.: Evaluating the Met Office Unified Model LST model background land surface temperature (LST) and emissivity. At the Met Office, IASI (Infrared Atmospheric Sounding Interferometer) surface-sensitive channels, including window channels and lower-tropospheric (below 400 hPa) sounding channels, are rejected during assimilation windows for observations over land surfaces and during daytime periods (Pavelin and Candy, 2014)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.