Abstract

Background. Roux-en-Y gastric bypass (RYGB) is the most common bariatric operation; however, the mechanism underlying the profound weight-independent effects on glucose homeostasis remains unclear. Large animal models of naturally occurring insulin resistance (IR), which have been lacking, would provide opportunities to elucidate such mechanisms. Ossabaw miniature swine naturally exhibit many features that may be useful in evaluating the anti diabetic effects of bariatric surgery. Methods. Glucose homeostasis was studied in 53 Ossabaw swine. Thirty-two received an obesogenic diet and were randomized to RYGB, gastrojejunostomy (GJ), gastrojejunostomy with duodenal exclusion (GJD), or Sham operations. Intravenous glucose tolerance tests and standardized meal tolerance tests were performed prior to, 1, 2, and 8 weeks after surgery and at a single time-point for regular diet control pigs. Results. High-calorie-fed Ossabaws weighed more and had greater IR than regular diet controls, though only 70% developed IR. All operations caused weight-loss-independent improvement in IR, though only in pigs with high baseline IR. Only RYGB induced weight loss and decreased IR in the majority of pigs, as well as increasing AUCinsulin/AUCglucose. Conclusions. Similar to humans, Ossabaw swine exhibit both obesity-dependent and obesity-independent IR. RYGB promoted weight loss, IR improvement, and increased AUCinsulin/AUCglucose, compared to the smaller changes following GJ and GJD, suggesting a combination of upper and lower gut mechanisms in improving glucose homeostasis.

Highlights

  • Roux-en-Y gastric bypass (RYGB) has emerged as the most efficient and effective approach for weight loss and treatment of type 2 diabetes mellitus (T2DM) in obese patients [1, 2]

  • We hypothesized that these animals would facilitate the study of RYGB mechanisms in ways not feasible in toxin-induced, rodent, or other large animal models of diabetes or insulin resistance [16]

  • This study aims to evaluate Ossabaw miniature swine as a large animal model for metabolic syndrome and to assess the effects of several GI rearrangements on body weight and insulin resistance (IR), potentially elucidating RYGB’s influence on glucose homeostasis

Read more

Summary

Introduction

Roux-en-Y gastric bypass (RYGB) has emerged as the most efficient and effective approach for weight loss and treatment of type 2 diabetes mellitus (T2DM) in obese patients [1, 2]. Ossabaw miniature swine appear to be a valuable model of acquired obesity and IR [15]. We hypothesized that these animals would facilitate the study of RYGB mechanisms in ways not feasible in toxin-induced, rodent, or other large animal models of diabetes or insulin resistance [16]. Roux-en-Y gastric bypass (RYGB) is the most common bariatric operation; the mechanism underlying the profound weight-independent effects on glucose homeostasis remains unclear. RYGB promoted weight loss, IR improvement, and increased AUCinsulin/AUCglucose, compared to the smaller changes following GJ and GJD, suggesting a combination of upper and lower gut mechanisms in improving glucose homeostasis

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call