Abstract

This study evaluates the existing design methods of Geosynthetic-Reinforced Load Transfer Platform for Pile-Supported Embankments (GLTP-PSE) through comprehensive 3D Finite Element (FE) analyses. It scrutinizes the assumed arching mechanisms, methodologies, design criteria (arching height, maximum strain, differential settlement, and T in geosynthetics), and overall performance of these methods. The 3D FE analysis results and measurements from two case studies were compared with six established GLTP-PSE design methods based on the four design criteria. Key findings include the identification of a progressive concentrated ellipsoid as the developed soil arching formation, with arching height dependent on the embankment equivalent height (including embankment and traffic load), pile spacing, maximum strain along the geosynthetics, and the number of geosynthetic layers. The load distribution on geosynthetic reinforcement was observed to align more closely with a non-linear inverse triangle. These insights led to recommendations for updating existing design methods, enhancing the accuracy and reliability of GLTP-PSE designs. The study's outcomes contribute significantly to advancing and refining GLTP-PSE design practices by providing a deeper understanding of soil arching mechanisms and the performance of geosynthetic reinforcements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.