Abstract

The improvement of the solar efficiency of photocatalytic materials is important for solar driven environmental remediation and solar energy harvesting applications. Photoelectrochemical characterization of nitrogen and fluorine codoped titanium dioxide (N,F-TiO2) was used to probe the mechanism of visible light activity. The spectral photocurrent response under visible irradiation did not correlate with the optical absorption spectrum of the N,F-TiO2; however, open-circuit photopotential measurements provided better correlation to the optical absorption spectra. These observations suggest that electrons excited to the conduction band from the N-induced midgap state are rapidly trapped by defect levels below the conduction band. Reactive oxygen species (ROS) can be produced via the reduction of molecular oxygen by conduction band electrons leading to the oxidative degradation of organic pollutants, and singlet oxygen may play a role. If there is no loss in the band gap activity, as compared to undoped tit...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.