Abstract

BackgroundB4galnt2 is a blood group-related glycosyltransferase that displays cis-regulatory variation for its tissue-specific expression patterns in house mice. The wild type allele, found e.g. in the C57BL/6 J strain, directs intestinal expression of B4galnt2, which is the pattern observed among vertebrates, including humans. An alternative allele class found in the RIIIS/J strain and other mice instead drives expression in blood vessels, which leads to a phenotype similar to type 1 von Willebrand disease (VWD), a common human bleeding disorder. We previously showed that alternative B4galnt2 alleles are subject to long-term balancing selection in mice and that variation in B4galnt2 expression influences host-microbe interactions in the intestine. This suggests that the costs of prolonged bleeding in RIIIS/J allele-bearing mice might be outweighed by benefits associated with resistance against gastrointestinal pathogens. However, the conditions under which such trade-offs could lead to the long-term maintenance of disease-associated variation at B4galnt2 are unclear.ResultsTo explore the persistence of B4galnt2 alleles in wild populations of house mice, we combined B4galnt2 haplotype frequency data together with a mathematical model based on an evolutionary game framework with a modified Wright-Fisher process. In particular, given the potential for a heterozygote advantage as a possible explanation for balancing selection, we focused on heterozygous mice, which express B4galnt2 in both blood vessels and the gastrointestinal tract. We show that B4galnt2 displays an interesting spatial allelic distribution in Western Europe, likely due to the recent action of natural selection. Moreover, we found that the genotype frequencies observed in nature can be produced by pathogen-driven selection when both heterozygotes and RIIIS/J homozygotes are protected against infection and the fitness cost of bleeding is roughly half that of infection.ConclusionBy comparing the results of our models to the patterns of polymorphism at B4galnt2 in natural populations, we are able to recognize the long-term maintenance of the RIIIS/J allele through host-pathogen interactions as a viable hypothesis. Further, our models identify that a putative dominant-, yet unknown protective function of the RIIIS/J allele appears to be more likely than a protective loss of intestinal B4galnt2 expression in RIIIS/J homozygotes.

Highlights

  • B4galnt2 is a blood group-related glycosyltransferase that displays cis-regulatory variation for its tissue-specific expression patterns in house mice

  • Wild mice First, in order to further characterize the intriguing geographic pattern of RIIIS/J allele frequency observed by Johnsen et al [4], we typed B4galnt2 allele classes using the same diagnostic PCR fragment in a set of eight wild population collections spread across France and Germany [18]

  • These populations represent six new locations, in addition to a resampling of the two locations previously analyzed by Johnsen et al [4]. This reveals an intriguing pattern of distribution of the RIIIS/J allele: it is nearly absent in the north and east of France and in Germany, but it is consistently >30% in three local populations in the south and west of France (Fig. 1a)

Read more

Summary

Introduction

B4galnt is a blood group-related glycosyltransferase that displays cis-regulatory variation for its tissue-specific expression patterns in house mice. Despite the expected fitness cost of prolonged bleeding times for wild animals, the RIIIS/J allele is found in high frequencies in various wild populations of house mice and their relatives [4, 5] These populations show signs of long term balancing selection maintaining both C57BL/6 J and RIIIS/J allele classes for at least 2.8 Ma. Further, in a previous survey of Mus musculus domesticus populations, a partial selective sweep revealed a recent increase in RIIIS/J allele frequency in a population from Southern France, while the allele was absent from a German population [4]. This suggests that selective force(s) operating on B4galnt alleles in Western Europe may differ according to space and/or time

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call