Abstract
Thermodynamic and kinetic parameters, such as enthalpy, entropy, and free energy, are crucial in evaluating enzyme stability and activity. These parameters, including the free energy of activation (ΔG#) and the Gibbs free energy of inactivation (ΔG*), are important for predicting energy requirements and reaction rates. However, relying solely on these parameters is insufficient in selecting an enzyme for industrial processes. Numerous studies have explored the measurement of thermodynamic parameters for proteases. Unfortunately, some of the definitions and calculations of key parameters such as ΔG#, ΔG*, and substrate-binding free energy have contained significant errors. In this study, these mistakes have been addressed and corrected. Additionally, a new parameter called δ, defined as the difference between ΔG* and ΔG#, has been introduced for the first time. It is argued that δ provides a more reliable measure for predicting the potential industrial application of enzymes. The highest calculated value for δ was found to be 39.6 kJ·mol−1 at 55 °C. Furthermore, this study also presents a comprehensive collection and determination of all thermodynamic and kinetic parameters for proteases, providing researchers and professionals in the field with a valuable resource to compare and understand the relationships between these parameters and the industrial potential of enzymes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.