Abstract

The aim of this study was to evaluate the in situ insulinotropic effects of pea protein hydrolysates (PPHs) mediated by active glucagon-like peptide-17-36 (active GLP-1) using a 2D and dual-layered coculture cell model. Following this model, a mixed Caco-2 and NCI-H716 cell monolayer was differentiated on the apical side to study the effects of PPHs on active GLP-1 levels; meanwhile, the beta-TC-6 cells were seeded on the basolateral side to investigate the insulin responses induced by active GLP-1. The in situ DPP-4 half-maximal inhibitory concentration (IC50) of PPHs, PPHs-120G, and PPHs-120I was 2.94, 3.43, and 2.26 mg/mL, respectively. They directly stimulated active GLP-1 secretion in NCI-H716 cells by 3.03 ± 0.21, 1.99 ± 0.03, and 2.24 ± 0.02 times, respectively. Insulin release in beta-TC-6 cells was directly stimulated by PPHs but not by PPHs-120G and PPHs-120I. Interestingly, PPHs-120G and PPHs-120I indirectly stimulated insulin release in this coculture cell model by enhancing active GLP-1 concentrations. More importantly, PPHs, PPHs-120G, and PPHs-120I increase active GLP-1 levels by their dual function of stimulating active GLP-1 secretion and DPP-4 inhibition. This study suggests that the 2D and dual-layered coculture cell model supports a more comprehensive assessment of in situ insulinotropic effects of protein hydrolysates mediated by active GLP-1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call