Abstract

Identifying and accounting for unobserved individual heterogeneity in vital rates in demographic models is important for estimating population-level vital rates and identifying diverse life-history strategies, but much less is known about how this individual heterogeneity influences population dynamics. We aimed to understand how the distribution of individual heterogeneity in reproductive and survival rates influenced population dynamics using vital rates from a Weddell seal population by altering the distribution of individual heterogeneity in reproduction, which also altered the distribution of individual survival rates through the incorporation of our estimate of the correlation between the two rates and assessing resulting changes in population growth. We constructed an integral projection model (IPM) structured by age and reproductive state using estimates of vital rates for a long-lived mammal that has recently been shown to exhibit large individual heterogeneity in reproduction. Using output from the IPM, we evaluated how population dynamics changed with different underlying distributions of unobserved individual heterogeneity in reproduction. Results indicate that the changes to the underlying distribution of individual heterogeneity in reproduction cause very small changes in the population growth rate and other population metrics. The largest difference in the estimated population growth rate resulting from changes to the underlying distribution of individual heterogeneity was less than 1%. Our work highlights the differing importance of individual heterogeneity at the population level compared to the individual level. Although individual heterogeneity in reproduction may result in large differences in the lifetime fitness of individuals, changing the proportion of above- or below-average breeders in the population results in much smaller differences in annual population growth rate. For a long-lived mammal with stable and high adult-survival that gives birth to a single offspring, individual heterogeneity in reproduction has a limited effect on population dynamics. We posit that the limited effect of individual heterogeneity on population dynamics may be due to canalization of life-history traits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call