Abstract

Effective evaluations of the future urban expansion impacts (UEI) on surface runoff in alpine basins are full of challenges due to the lack of reliable methods. Our objective was to provide a new approach by coupling the Land Use Scenario Dynamics-urban (LUSD-urban) and Soil Conservation Service-Curve Number (SCS-CN) models to estimate the future UEI on surface runoff. Taking the Qinghaihu-Huangshui basin (QHB) in the Tibetan Plateau, China, as an example, we first applied the SCS-CN model to quantify the surface runoff in 2000 and 2018 and analyzed the changes in surface runoff. Next, we applied the LUSD-urban model to simulate urban expansion under five localized shared socioeconomic pathways (SSPs) from 2018 to 2050. Finally, we assessed the UEI on surface runoff in the QHB from 2018 to 2050. We found that coupling the LUSD-urban and SCS-CN models could effectually evaluate the future UEI on surface runoff. Compared with the combination of the Future Land Use Simulation (FLUS) and SCS-CN models, our method reduced the absolute evaluation errors from 3.40% and 11.78% to 0.18% and 4.23%, respectively. In addition, the results showed that future urban expansion will have severe impacts on surface runoff in the valley region. For example, as a result of urban expansion, the surface runoff in the Huangzhong, Xining, and Datong catchments will increase by 4.90–9.01%, 4.25–7.36%, and 2.33–3.95%, respectively. Therefore, we believe that the coupled model can be utilized to evaluate the future UEI on surface runoff in alpine basins. In addition, the local government should pay attention to flood risk prevention, especially in the valley region, and adopt reasonable urban planning with soft and hard adaptation measures to promote the sustainable development of alpine basins under rapid urban expansion.

Highlights

  • The alpine basin is a basin with frozen soil, high altitude, and low temperature throughout the year

  • The low runoff was mainly located in the middle and northeast, while the low-medium runoff was mainly concentrated in the middle and southeast

  • The results revealed that the coupled LUSD-urban and Service-Curve Number (SCS-Curve Number (CN)) models can precisely simulate the future urban expansion impacts (UEI) on surface runoff

Read more

Summary

Introduction

The alpine basin is a basin with frozen soil, high altitude, and low temperature throughout the year. The alpine basin generally refers to an area with an average altitude above 1500 m and an annual temperature below 10 ◦ C [1,2,3]. Water 2020, 12, 3405 the water cycle, surface runoff is a key index to measure the risk of flood and waterlogging disasters in the basin [6,7]. Due to rapid socioeconomic development, urbanization has become one of the important elements affecting surface runoff [8,9,10]. The changes in surface runoff caused by urban expansion have already led to flood disasters in alpine basins [13]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.