Abstract

Automobile emissions in urban cities, such as Peru, are significant; however, there are no published studies of the effects of these emissions on PM2.5 (fine particulate matter) formation. This study aims to analyze the contributions of vehicle aerosol emissions to the surface mass concentration of PM2.5 in the Metropolitan Area of Lima and Callao (MALC), one of the most polluted cities in Latin America and the Caribbean (LAC) known to have high concentrations of PM2.5. In February 2018, we performed two numerical simulations (control and sensitivity) using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem). We considered both trace gasses and aerosol emissions from on-road traffic for the baseline simulation (hereinafter referred to as “control”); gasses without particulate emissions from vehicles were considered for the sensitivity simulation (hereinafter referred to as WithoutAerosol). For control, the model’s performance was evaluated using in situ on-ground PM2.5 observations. The results of the predicted PM2.5 concentration, temperature, and relative humidity at 2 m, with wind velocity at 10 m, indicated the accuracy of the model for the control scenario. The results for the WithoutAerosol scenario indicated that the contributions of vehicular trace gasses to secondary aerosols PM2.5 concentrations was 12.7%; aerosol emissions from road traffic contributed to the direct emissions of fine aerosol (31.7 ± 22.6 µg/m3).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call