Abstract

A new area model for estimating the layout area of switch blocks is introduced in this work. The model is based on a realistic layout strategy. As a result, it not only takes into consideration the active area that is needed to construct a switch block but also the number of metal layers available and the actual dimensions of these metals. The model assigns metal layers to the routing tracks in a way that reduces the number of vias that are needed to connect different routing tracks together while maintaining the tile-based structure of FPGAs. It also takes into account the wiring area required for buffer insertion for long wire segments. The model is evaluated based on the layouts constructed in the ASAP7 FinFET 7nm Predictive Design Kit. We found that the new model, while specific to the layout strategy that it employs, improves upon the traditional active-based area estimation models by considering the growth of the metal area independently from the growth of the active area. As a result, the new model is able to more accurately estimate the layout area by predicting when the metal area will overtake the active area as the number of routing tracks is increased. This ability allows the more accurate estimation of the true layout cost of FPGA fabrics at the early floor planning and architectural exploration stage; and this increase in accuracy can encourage a wider use of custom FPGA fabrics that target specific sets of benchmarks in future SOC designs. Furthermore, our data indicate that the conclusions drawn from several significant prior architectural studies remain to be correct under FinFET geometries and wiring area considerations despite their exclusive use of active-only area models. This correctness is due to the small channel widths, around 30–60 tracks per channel, of the architectures that these studies investigate. For architectures that approach the channel width of modern commercial FPGAs with more than 100–200 tracks per channel, our data show that wiring area models justified by detailed layout considerations are an essential addition to active area models in the correct prediction of the implementation area of FPGAs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.